拓撲斯[编辑]
數學中,拓撲斯(topos)是一種範疇,性狀類似拓撲空間上的集合層範疇。
格羅滕迪克拓撲斯(幾何中的拓子)
[编辑]自1940年代層的引入,數學中一個重要的主題便成了用空間上的層研究空間。亞曆山大·格羅滕迪克以引入拓子的概念,詳細說明了這個想法。在數學中,常常有這樣的情況:拓撲直覺很有效,但是並沒有拓撲空間,這时拓撲斯便顯出它的功效;有時可以找到一個拓撲斯,使得直覺形式化。這個程式化的想法最偉大的成就是概形的平展拓撲斯的引入。
等價構造
[编辑]令C為一範疇。Giraud的一個定理斷言,以下命題等價:
- 有小範疇D和包含關係C Presh(D)使得其存在保持有限極限的左伴隨。
- C是格羅滕迪克site上的層範疇。
- C滿足以下的Giraud公理
有如上之性質的範疇稱為“(格羅滕迪克)拓撲斯”。這裡Presh(D)表示從D到幾何範疇的反變函子範疇;如此的反變函子常被稱為預層。
Giraud公理
[编辑]範疇C的Giraud公理是:
最後一個公理需要最多解釋。若X為C中對象,X上一等價關係R為C中映射R→X×X,使得所有映射Hom(Y,R)→Hom(Y,X)×Hom(Y,X)是集合中的等價關係。因為C有余極限,我們可構作兩映射R→X的余等化子X/R。這等價關係是有效的,若典範映射
是同構。
例子
[编辑]Giraud定理已經給出了“sites上的層”作為例子的完全列表。注意不等價的sites常常給出等價的拓撲斯。如介紹所示,普通拓撲空間上的層激發了很多拓撲斯理論的基本定義和結果。
集合的範疇是特別而重要的情形:它在拓撲斯理論中扮演了點的角色。確實,一個集合可被理解成單點上的層。
更多外來的例子和拓撲斯理論存在的理由來自代數幾何。對一概形甚至是棧,我們可關聯平展拓撲斯,fppf拓撲斯,Nisnevich拓撲斯……
幾何態射
[编辑]如果X和Y是拓撲斯,一個幾何態射u: X→Y是一對伴隨函子(u∗,u∗),使得u∗保持有限極限。注意u∗由於有右伴隨而自動保持余極限。
通過Freyd伴隨函子定理,給定一幾何態射X → Y相當於給定一保持有限極限和所有小余極限的函子u∗: Y → X。
因此拓撲斯間的幾何態射可以被看成locales的映射的類似。
若X和Y是拓撲空間,u是其間的連續映射,層上的前推和拉回給出相關拓撲斯間的幾何態射。
拓撲斯的點
[编辑]拓子X中的點是從集合的拓子到X的幾何態射。
若X是普通拓撲空間,x是X的點,那麼把層F帶到它的莖Fx的函子有右伴隨(“摩天大樓層”函子),因此X的普通點同時決定了一個拓撲斯理論中的點。這些可以用沿連續映射x: 1 → X的拉回前推來構造。
基本幾何態射
[编辑]一幾何態射(u∗,u∗)被稱為基本的,若u∗有進一步左伴隨u!,或等價地(由伴隨函子定理)若u∗不僅保持有限而且保持所有小極限。
賦環拓撲斯
[编辑]一個賦環拓撲斯是對(X,R),其中X是一拓撲斯而R是X中交換環對象。大部分賦環空間的構造可用在賦環拓撲斯上。X中R模對象範疇是有足夠內射元的阿貝爾範疇。更有用的阿貝爾範疇是擬凝聚R模子範疇:它們是有展示的R模。
除賦環空間,另一類重要的賦環拓撲斯是德利涅-芒福德棧的平展拓撲斯。
拓撲斯的同倫理論
[编辑]基本拓撲斯(邏輯中的拓撲斯)
[编辑]介紹
[编辑]形式定義
[编辑]解釋
[编辑]進一步的例子
[编辑]參見
[编辑]參考資料
[编辑]补充来源
[编辑]- 一些論文
- John Baez: "Topos theory in a nutshell. (页面存档备份,存于互联网档案馆)" A gentle introduction.
- Steven Vickers: "Toposes pour les nuls (页面存档备份,存于互联网档案馆)" and "Toposes pour les vraiment nuls. (页面存档备份,存于互联网档案馆)" Elementary and even more elementary introductions to toposes as generalized spaces.
- Illusie, Luc, What is a ... topos? (PDF), Notices of the AMS, [2011-02-05], (原始内容存档 (PDF)于2020-08-01)
以下是對範疇論和拓撲斯易學的介紹。 它們適合對數理邏輯和集合論瞭解較少的人,甚至是非數學家。
- F. William Lawvere and Stephen H. Schanuel (1997) Conceptual Mathematics: A First Introduction to Categories. Cambridge University Press. An "introduction to categories for computer scientists, logicians, physicists, linguists, etc." (cited from cover text).
- F. William Lawvere and Robert Rosebrugh (2003) Sets for Mathematics. Cambridge University Press. Introduces the foundations of mathematics from a categorical perspective.
格羅滕迪克對拓撲斯基礎性的工作:
- Grothendieck and Verdier: Théorie des topos et cohomologie étale des schémas (known as SGA4)". New York/Berlin: Springer, ??. (Lecture notes in mathematics, 269–270)
以下專著包括對部分或全部拓撲斯理論的介紹,但並非主要為初學者而寫。 越靠後難度越高。
- Colin McLarty (1992) Elementary Categories, Elementary Toposes. Oxford Univ. Press. A nice introduction to the basics of category theory, topos theory, and topos logic. Assumes very few prerequisites.
- Robert Goldblatt (1984) Topoi, the Categorial Analysis of Logic (Studies in logic and the foundations of mathematics, 98). North-Holland. A good start. Reprinted 2006 by Dover Publications, and available online (页面存档备份,存于互联网档案馆) at Robert Goldblatt's homepage. (页面存档备份,存于互联网档案馆)
- John Lane Bell (2005) The Development of Categorical Logic. Handbook of Philosophical Logic, Volume 12. Springer. Version available online (页面存档备份,存于互联网档案馆) at John Bell's homepage. (页面存档备份,存于互联网档案馆)
- Saunders Mac Lane and Ieke Moerdijk (1992) Sheaves in Geometry and Logic: a First Introduction to Topos Theory. Springer Verlag. More complete, and more difficult to read.
- Michael Barr and Charles Wells (1985) Toposes, Triples and Theories. Springer Verlag. Corrected online version at https://web.archive.org/web/20100821021308/http://www.cwru.edu/artsci/math/wells/pub/ttt.html. More concise than Sheaves in Geometry and Logic, but hard on beginners.
- 專家的參考文獻,不適合初次學習
- Francis Borceux (1994) Handbook of Categorical Algebra 3: Categories of Sheaves, Volume 52 of the Encyclopedia of Mathematics and its Applications. Cambridge University Press. The third part of "Borceux' remarkable magnum opus", as Johnstone has labelled it. Still suitable as an introduction, though beginners may find it hard to recognize the most relevant results among the huge amount of material given.
- Peter T. Johnstone (1977) Topos Theory, L. M. S. Monographs no. 10. Academic Press. ISBN 0123878500. For a long time the standard compendium on topos theory. However, even Johnstone describes this work as "far too hard to read, and not for the faint-hearted."
- Peter T. Johnstone (2002) Sketches of an Elephant: A Topos Theory Compendium. Oxford Science Publications. As of early 2010, two of the scheduled three volumes of this overwhelming compendium were available.
- 以拓撲斯的特殊應用為目的的書
- Maria Cristina Pedicchio and Walter Tholen, eds. (2004) Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory. Volume 97 of the Encyclopedia of Mathematics and its Applications. Cambridge University Press. Includes many interesting special applications.