迭代稀疏渐近最小方差算法 [ 1] 是用于信号处理中的谱估计和到达方向(DOA)估计的无参数超分辨率算法。 这个名称是为了强调渐近最小方差(AMV)标准的创造基础。 它是在恶劣环境下恢复多个高相关源的幅度和频率特性的有力工具,例如有限数量的快照,低信噪比。 它可以用于合成孔径雷达 [ 2] [ 3] 。
迭代稀疏渐近最小方差算法是一种基于压缩感知 的超高分辨率成像 程式, 可以用于合成孔径雷达 成像, 信号处理 , 核磁共振成像 等医学影像 领域。
SAMV算法的公式在DOA估计的背景下作为反问题 给出。假设
M
{\displaystyle M}
-元素 均匀线性阵列 (ULA)分别接收从位于
θ
=
{
θ
a
,
…
,
θ
K
}
{\displaystyle \mathbf {\theta } =\{\theta _{a},\ldots ,\theta _{K}\}}
位置发出的
K
{\displaystyle K}
窄带信号。 ULA中的传感器在特定时间累积
N
{\displaystyle N}
快照。
M
×
1
{\displaystyle M\times 1}
维快照向量是
y
(
n
)
=
A
x
(
n
)
+
e
(
n
)
,
n
=
1
,
…
,
N
{\displaystyle \mathbf {y} (n)=\mathbf {A} \mathbf {x} (n)+\mathbf {e} (n),n=1,\ldots ,N}
其中
A
=
[
a
(
θ
1
)
,
…
,
a
(
θ
K
)
]
{\displaystyle \mathbf {A} =[\mathbf {a} (\theta _{1}),\ldots ,\mathbf {a} (\theta _{K})]}
是转向矩阵 ,
x
(
n
)
=
[
x
1
(
n
)
,
…
,
x
K
(
n
)
]
T
{\displaystyle {\bf {x}}(n)=[{\bf {x}}_{1}(n),\ldots ,{\bf {x}}_{K}(n)]^{T}}
包含源波形, 和
e
(
n
)
{\displaystyle {\bf {e}}(n)}
是噪音词。假设
E
(
e
(
n
)
e
H
(
n
¯
)
)
=
σ
I
M
δ
n
,
n
¯
{\displaystyle \mathbf {E} \left({\bf {e}}(n){\bf {e}}^{H}({\bar {n}})\right)=\sigma {\bf {I}}_{M}\delta _{n,{\bar {n}}}}
,
δ
n
,
n
¯
{\displaystyle \delta _{n,{\bar {n}}}}
是 Dirac delta 函数 并且它仅等于1,唯一存在
n
=
n
¯
{\displaystyle n={\bar {n}}}
否则为0。并且假设
e
(
n
)
{\displaystyle {\bf {e}}(n)}
and
x
(
n
)
{\displaystyle {\bf {x}}(n)}
是独立的,而
E
(
x
(
n
)
x
H
(
n
¯
)
)
=
P
δ
n
,
n
¯
{\displaystyle \mathbf {E} \left({\bf {x}}(n){\bf {x}}^{H}({\bar {n}})\right)={\bf {P}}\delta _{n,{\bar {n}}}}
, where
P
=
Diag
(
p
1
,
…
,
p
K
)
{\displaystyle {\bf {P}}=\operatorname {Diag} ({p_{1},\ldots ,p_{K}})}
. Let
p
{\displaystyle {\bf {p}}}
是包含未知信号功率和噪声方差的向量,
p
=
[
p
1
,
…
,
p
K
,
σ
]
T
{\displaystyle {\bf {p}}=[p_{1},\ldots ,p_{K},\sigma ]^{T}}
.
y
(
n
)
{\displaystyle {\bf {y}}(n)}
的协方差矩阵,其中有关
p
{\displaystyle {\boldsymbol {\bf {p}}}}
的是
R
=
A
P
A
H
+
σ
I
.
{\displaystyle {\bf {R}}={\bf {A}}{\bf {P}}{\bf {A}}^{H}+\sigma {\bf {I}}.}
该协方差矩阵可以通过样本协方差矩阵进行传统估计
R
N
=
Y
Y
H
/
N
{\displaystyle {\bf {R}}_{N}={\bf {Y}}{\bf {Y}}^{H}/N}
,其中
Y
=
[
y
(
1
)
,
…
,
y
(
N
)
]
{\displaystyle {\bf {Y}}=[{\bf {y}}(1),\ldots ,{\bf {y}}(N)]}
。将向量化运算符应用于矩阵
R
{\displaystyle {\bf {R}}}
后,获取的向量
r
(
p
)
=
vec
(
R
)
{\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})}
与未知参数线性相关
p
{\displaystyle {\boldsymbol {\bf {p}}}}
当
r
(
p
)
=
vec
(
R
)
=
S
p
{\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})={\bf {S}}{\boldsymbol {\bf {p}}}}
,
其中
S
=
[
S
1
,
a
¯
K
+
1
]
{\displaystyle {\bf {S}}=[{\bf {S}}_{1},{\bar {\bf {a}}}_{K+1}]}
,
S
1
=
[
a
¯
1
,
…
,
a
¯
K
]
{\displaystyle {\bf {S}}_{1}=[{\bar {\bf {a}}}_{1},\ldots ,{\bar {\bf {a}}}_{K}]}
,
a
¯
k
=
a
k
∗
⊗
a
k
{\displaystyle {\bar {\bf {a}}}_{k}={\bf {a}}_{k}^{*}\otimes {\bf {a}}_{k}}
,
k
=
1
,
…
,
K
{\displaystyle k=1,\ldots ,K}
, 和使
a
¯
K
+
1
=
vec
(
I
)
{\displaystyle {\bar {\bf {a}}}_{K+1}=\operatorname {vec} ({\bf {I}})}
.
要从统计的
r
N
{\displaystyle {\bf {r}}_{N}}
去估算
p
{\displaystyle {\boldsymbol {\bf {p}}}}
,我们基于渐近最小方差准则开发了一系列迭代SAMV方法。从[ 1] 开始,从协方差矩阵
Cov
p
Alg
{\displaystyle \operatorname {Cov} _{\boldsymbol {p}}^{\operatorname {Alg} }}
的任意一致的估计值
p
{\displaystyle {\boldsymbol {p}}}
,基于二阶统计值
r
N
{\displaystyle {\bf {r}}_{N}}
,以实数对称-正定矩阵为界
Cov
p
Alg
≥
[
S
d
H
C
r
−
1
S
d
]
−
1
,
{\displaystyle \operatorname {Cov} _{\boldsymbol {p}}^{\operatorname {Alg} }\geq [{\bf {S}}_{d}^{H}{\bf {C}}_{r}^{-1}{\bf {S}}_{d}]^{-1},}
其中
S
d
=
d
r
(
p
)
/
d
p
{\displaystyle {\bf {S}}_{d}={\rm {d}}{\bf {r}}({\boldsymbol {p}})/{\rm {d}}{\boldsymbol {p}}}
。此外,这个下界是通过最小化得到的
p
^
{\displaystyle {\hat {\bf {p}}}}
的渐近分布的协方差矩阵得到的。 ,
p
^
=
arg
min
p
f
(
p
)
,
{\displaystyle {\hat {\boldsymbol {p}}}=\arg \min _{\boldsymbol {p}}f({\boldsymbol {p}}),}
其中
f
(
p
)
=
[
r
N
−
r
(
p
)
]
H
C
r
−
1
[
r
N
−
r
(
p
)
]
.
{\displaystyle f({\boldsymbol {p}})=[{\bf {r}}_{N}-{\bf {r}}({\boldsymbol {p}})]^{H}{\bf {C}}_{r}^{-1}[{\bf {r}}_{N}-{\bf {r}}({\boldsymbol {p}})].}
因此,可以迭代地获
p
{\displaystyle {\boldsymbol {\bf {p}}}}
的估计值。
{
p
^
k
}
k
=
1
K
{\displaystyle \{{\hat {p}}_{k}\}_{k=1}^{K}}
和最小化
f
(
p
)
{\displaystyle f({\boldsymbol {p}})}
的
σ
^
{\displaystyle {\hat {\sigma }}}
可借由以下计算获得。
假设
p
^
k
(
i
)
{\displaystyle {\hat {p}}_{k}^{(i)}}
和
σ
^
(
i
)
{\displaystyle {\hat {\sigma }}^{(i)}}
在第
i
{\displaystyle i}
迭代中已被估算到某种程度, 第
(
i
+
1
)
{\displaystyle (i+1)}
迭代可以被精简成,
p
^
k
(
i
+
1
)
=
a
k
H
R
−
1
(
i
)
R
N
R
−
1
(
i
)
a
k
(
a
k
H
R
−
1
(
i
)
a
k
)
2
+
p
^
k
(
i
)
−
1
a
k
H
R
−
1
(
i
)
a
k
,
k
=
1
,
…
,
K
{\displaystyle {\hat {p}}_{k}^{(i+1)}={\frac {{\bf {a}}_{k}^{H}{\bf {R}}^{-1{(i)}}{\bf {R}}_{N}{\bf {R}}^{-1{(i)}}{\bf {a}}_{k}}{({\bf {a}}_{k}^{H}{\bf {R}}^{-1{(i)}}{\bf {a}}_{k})^{2}}}+{\hat {p}}_{k}^{(i)}-{\frac {1}{{\bf {a}}_{k}^{H}{\bf {R}}^{-1{(i)}}{\bf {a}}_{k}}},\quad k=1,\ldots ,K}
σ
^
(
i
+
1
)
=
(
Tr
(
R
−
2
(
i
)
R
N
)
+
σ
^
(
i
)
Tr
(
R
−
2
(
i
)
)
−
Tr
(
R
−
1
(
i
)
)
)
/
Tr
(
R
−
2
(
i
)
)
,
{\displaystyle {\hat {\sigma }}^{(i+1)}=\left(\operatorname {Tr} ({\bf {R}}^{-2^{(i)}}{\bf {R}}_{N})+{\hat {\sigma }}^{(i)}\operatorname {Tr} ({\bf {R}}^{-2^{(i)}})-\operatorname {Tr} ({\bf {R}}^{-1^{(i)}})\right)/{\operatorname {Tr} {({\bf {R}}^{-2^{(i)}})}},}
其中
R
{\displaystyle {\bf {R}}}
的估计值在第
i
{\displaystyle i}
迭代是
R
(
i
)
=
A
P
(
i
)
A
H
+
σ
^
(
i
)
I
{\displaystyle {\bf {R}}^{(i)}={\bf {A}}{\bf {P}}^{(i)}{\bf {A}}^{H}+{\hat {\sigma }}^{(i)}{\bf {I}}}
with
P
(
i
)
=
Diag
(
p
^
1
(
i
)
,
…
,
p
^
K
(
i
)
)
{\displaystyle {\bf {P}}^{(i)}=\operatorname {Diag} ({\hat {p}}_{1}^{(i)},\ldots ,{\hat {p}}_{K}^{(i)})}
.
基于大多数压缩感知的源定位技术的分辨率受到覆盖位置参数空间的方向网格的精细度的限制。[ 4] 在稀疏信号恢复模型中,真值信号的稀疏性
x
(
n
)
{\displaystyle \mathbf {x} (n)}
取决于超完备字典
A
{\displaystyle {\bf {A}}}
中相邻元素之间的距离因此, 会出现选择最佳超完备字典的难度。计算复杂度与方向网格的精细度成正比,高密度网格在计算上不实用。为了克服网格强加的分辨率限制,提出了无网格SAMV-SML(迭代稀疏渐近最小方差 - 随机最大似然[ 1] , 它借由迭代的最小化随机最大似然估计 的消耗函数,相对于单一纯数
θ
k
{\displaystyle \theta _{k}}
,改进了位置估计
θ
=
(
θ
1
,
…
,
θ
K
)
T
{\displaystyle {\boldsymbol {\bf {\theta }}}=(\theta _{1},\ldots ,\theta _{K})^{T}}
。
SISO 范围多普勒成像结果与三个5 dB和六个25 dB目标进行比较。 (a)基础事实,(b)匹配滤波器(MF),(c)IAA算法,(d)SAMV-0算法。所有功率水平均以dB为单位。相对于多普勒轴,MF和IAA方法的分辨率都受到限制。 SAMV-0在范围和多普勒方面提供卓越的分辨率。 [ 1]
在 SISO 雷达 / 声纳 距离 - 多普勒成像 问题中使用SAMV算法的典型应用。该成像问题是单快照应用,并且包括与单快照估计兼容的算法,即匹配滤波器 (MF,类似于周期图 或反投影 ,这通常被有效地实现为快速傅里叶变换 (FFT)),IAA [ 5] 和SAMV算法的变体(SAMV-0)。 模拟条件与之相同[ 5] : 一个
30
{\displaystyle 30}
-元素的多项 pulse compression 使用P3代码相同作为发射脉冲,模拟总共九个运动目标。在所有移动目标中,三个是
5
{\displaystyle 5}
dB功率,其余六个是
25
{\displaystyle 25}
dB功率。假设接收信号被
0
{\displaystyle 0}
dB功率的均匀高斯白噪声污染。
匹配滤波器 检测结果在多普勒和范围域都受到严重的拖尾和光谱泄漏 影响,因此无法区分
5
{\displaystyle 5}
dB目标。相反,IAA算法提供增强的成像结果,具有可观察的目标范围估计和多普勒频率。 SAMV-0方法提供高度稀疏的结果并完全消除拖尾效应,但它错过了弱
5
{\displaystyle 5}
dB目标。
^ 1.0 1.1 1.2 1.3 Abeida, Habti; Zhang, Qilin; Li, Jian; Merabtine, Nadjim. Iterative Sparse Asymptotic Minimum Variance Based Approaches for Array Processing (PDF) . IEEE Transactions on Signal Processing. 2013, 61 (4): 933–944 [2018-09-14 ] . Bibcode:2013ITSP...61..933A . ISSN 1053-587X . arXiv:1802.03070 . doi:10.1109/tsp.2012.2231676 . (原始内容存档 (PDF) 于2021-02-24).
^ Glentis, George-Othon; Zhao, Kexin; Jakobsson, Andreas; Abeida, Habti; Li, Jian. SAR imaging via efficient implementations of sparse ML approaches. Signal Processing. 2014, 95 : 15–26. doi:10.1016/j.sigpro.2013.08.003 .
^ Yang, Xuemin; Li, Guangjun; Zheng, Zhi. DOA Estimation of Noncircular Signal Based on Sparse Representation. Wireless Personal Communications. 2015-02-03, 82 (4): 2363–2375. doi:10.1007/s11277-015-2352-z .
^ Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing. 2005, 53 (8): 3010–3022. Bibcode:2005ITSP...53.3010M . doi:10.1109/tsp.2005.850882 .
^ 5.0 5.1 Yardibi, Tarik; Li, Jian; Stoica, Petre; Xue, Ming; Baggeroer, Arthur B. Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares. IEEE Transactions on Aerospace and Electronic Systems. 2010, 46 (1): 425–443. Bibcode:2010ITAES..46..425Y . doi:10.1109/taes.2010.5417172 .