拉丁超立方抽样
外观
拉丁超立方抽样(英語:Latin hypercube sampling,缩写LHS)是一种从多元参数分布中近似随机抽样的方法,属于分层抽样技术,常用于计算机实验或蒙特卡洛积分等。
麦凯(McKay)等人于1979年提出了拉丁超立方抽样。[1]不过此前Eglājs于1977年独立提出过相同的抽样技术。[2]1981年,伊曼(Ronald L. Iman)等进一步发展了该方法。[3]
在统计抽样中,拉丁方阵是指每行、每列仅包含一个样本的方阵。拉丁超立方则是拉丁方阵在多维中的推广,每个与轴垂直的超平面最多含有一个样本。
假设有个变量(维度),可以将每个变量分为个概率相同的区间。此时,可以选取个满足拉丁超立方条件的样本点。需要注意的是,拉丁超立方抽样要求每个变量的分区数量相同。不过,该方法并不要求当变量增加时样本数同样增加。
参考文献
[编辑]- ^ McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code (JSTOR Abstract). Technometrics (American Statistical Association). May 1979, 21 (2): 239–245. ISSN 0040-1706. JSTOR 1268522. OSTI 5236110. doi:10.2307/1268522.
- ^ Eglajs, V.; Audze P. New approach to the design of multifactor experiments. Problems of Dynamics and Strengths. 35 (Riga: Zinatne Publishing House). 1977: 104–107 (俄语).
- ^ Iman, R.L.; Helton, J.C.; Campbell, J.E. An approach to sensitivity analysis of computer models, Part 1. Introduction, input variable selection and preliminary variable assessment. Journal of Quality Technology. 1981, 13 (3): 174–183.
延伸阅读
[编辑]- Tang, B. Orthogonal Array-Based Latin Hypercubes. Journal of the American Statistical Association. 1993, 88 (424): 1392–1397. JSTOR 2291282. doi:10.2307/2291282.
- Owen, A.B. Orthogonal arrays for computer experiments, integration and visualization. Statistica Sinica. 1992, 2: 439–452.
- Ye, K.Q. Orthogonal column Latin hypercubes and their application in computer experiments. Journal of the American Statistical Association. 1998, 93 (444): 1430–1439. JSTOR 2670057. doi:10.2307/2670057.