跳至內容

深度優先搜索

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
深度優先搜索
節點搜索的順序
節點搜索的順序
節點進行深度優先搜索的順序
概況
類別搜索演算法
資料結構
複雜度
平均時間複雜度
空間複雜度
最佳解
完全性
相關變量的定義
分支係數
圖的最大深度

深度優先搜索算法(英語:Depth-First-Search,縮寫為DFS)是一種用於遍歷或搜索算法。這個算法會儘可能深地搜索樹的分支。當節點v的所在邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發現的節點,則選擇其中一個作為源節點並重複以上過程,整個進程反覆進行直到所有節點都被訪問為止。[1](p. 603)這種算法不會根據圖的結構等信息調整執行策略[來源請求]

深度優先搜索是圖論中的經典算法,利用深度優先搜索算法可以產生目標圖的拓撲排序[1](p. 612),利用拓撲排序表可以方便的解決很多相關的圖論問題,如無權最長路徑問題等等。

因發明「深度優先搜索算法」,約翰·霍普克洛夫特羅伯特·塔揚1986年共同獲得計算機領域的最高獎:圖靈獎[2]

演算方法

[編輯]
  1. 首先將根節點放入stack中。
  2. stack中取出第一個節點,並檢驗它是否為目標。
    如果找到目標,則結束搜尋並回傳結果。
    否則將它某一個尚未檢驗過的直接子節點加入stack中。
  3. 重複步驟2。
  4. 如果不存在未檢測過的直接子節點。
    將上一級節點加入stack中。
    重複步驟2。
  5. 重複步驟4。
  6. stack為空,表示整張圖都檢查過了——亦即圖中沒有欲搜尋的目標。結束搜尋並回傳「找不到目標」。

C++的實作

[編輯]

定義一個結構體來表達一個二叉樹的節點的結構:

struct Node {
    int self;     // 数据
    Node *left;   // 左孩子
    Node *right;  // 右孩子
};

那麼我們在搜索一個樹的時候,從一個節點開始,能首先獲取的是它的兩個子節點。例如:

A是第一個訪問的,然後順序是B和D、然後是E。然後再是C、F、G。那麼我們怎麼來保證這個順序呢?

這裡就應該用堆棧的結構,因為堆棧是一個後進先出(LIFO)的順序。通過使用C++STL,下面的程序能幫助理解:

const int TREE_SIZE = 9;
std::stack<Node *> unvisited;
Node nodes[TREE_SIZE];
Node *current;

//初始化树
for (int i = 0; i < TREE_SIZE; i++) {
    nodes[i].self = i;
    int child = i * 2 + 1;
    if (child < TREE_SIZE) // Left child
        nodes[i].left = &nodes[child];
    else
        nodes[i].left = NULL;
    child++;
    if (child < TREE_SIZE) // Right child
        nodes[i].right = &nodes[child];
    else
        nodes[i].right = NULL;
}

unvisited.push(&nodes[0]); //先把0放入UNVISITED stack

// 树的深度优先搜索在二叉树的特例下,就是二叉树的先序遍历操作(这里是使用循环实现)
// 只有UNVISITED不空
while (!unvisited.empty()) {
    current = (unvisited.top()); //当前访问的
    unvisited.pop();
    if (current->right != NULL)
        unvisited.push(current->right );
    if (current->left != NULL)
        unvisited.push(current->left);
    cout << current->self << endl;
}

參考文獻

[編輯]
  1. ^ 1.0 1.1 Introduction to Algorithms [算法導論]. ISBN 978-7-111-40701-0. 
  2. ^ Robert E Tarjan - A.M. Turing Award Winner. [2017-10-29]. (原始內容存檔於2017-10-30) (英語). 

參見

[編輯]